Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(16): 4437-4443, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38626458

RESUMEN

Water molecules confined between biological membranes exhibit a distinctive non-Gaussian displacement distribution, far different from that of bulk water. Here, we introduce a new transport equation for water molecules in the intermembrane space, quantitatively explaining molecular dynamics simulation results. We find that the unique transport dynamics of water molecules stems from the lateral diffusion coefficient fluctuation caused by their longitudinal motion in the direction perpendicular to the membranes. We also identify an interfacial region where water possesses distinct physical properties, which is unaffected by changes in the intermembrane separation.

2.
Nat Commun ; 13(1): 6506, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344561

RESUMEN

Microbial consortia have been considered potential platforms for bioprocessing applications. However, the complexity in process control owing to the use of multiple strains necessitates the use of an efficient population control strategy. Herein, we report circuit-guided synthetic acclimation as a strategy to improve biochemical production by a microbial consortium. We designed a consortium comprising alginate-utilizing Vibrio sp. dhg and 3-hydroxypropionic acid (3-HP)-producing Escherichia coli strains for the direct conversion of alginate to 3-HP. We introduced a genetic circuit, named "Population guider", in the E. coli strain, which degrades ampicillin only when 3-HP is produced. In the presence of ampicillin as a selection pressure, the consortium was successfully acclimated for increased 3-HP production by 4.3-fold compared to that by a simple co-culturing consortium during a 48-h fermentation. We believe this concept is a useful strategy for the development of robust consortium-based bioprocesses.


Asunto(s)
Escherichia coli , Consorcios Microbianos , Consorcios Microbianos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Aclimatación , Ampicilina/metabolismo , Alginatos/metabolismo
3.
Sci Adv ; 7(49): eabi5419, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34860549

RESUMEN

Thermal motion of colloidal nanoparticles and their cohesive interactions are of fundamental importance in nanoscience but are difficult to access quantitatively, primarily due to the lack of the appropriate analytical tools to investigate the dynamics of individual particles at nanoscales. Here, we directly monitor the stochastic thermal motion and coalescence dynamics of gold nanoparticles smaller than 5 nm, using graphene liquid cell (GLC) transmission electron microscopy (TEM). We also present a novel model of nanoparticle dynamics, providing a unified, quantitative explanation of our experimental observations. The nanoparticles in a GLC exhibit non-Gaussian, diffusive motion, signifying dynamic fluctuation of the diffusion coefficient due to the dynamically heterogeneous environment surrounding nanoparticles, including organic ligands on the nanoparticle surface. Our study shows that the dynamics of nanoparticle coalescence is controlled by two elementary processes: diffusion-limited encounter complex formation and the subsequent coalescence of the encounter complex through rotational motion, where surface-passivating ligands play a critical role.

4.
Micromachines (Basel) ; 12(11)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34832728

RESUMEN

In this study, the deuterium passivation effect of silicon nitride (Si3N4) on data retention characteristics is investigated in a Metal-Nitride-Oxide-Silicon (MNOS) memory device. To focus on trap passivation in Si3N4 as a charge trapping layer, deuterium (D2) high pressure annealing (HPA) was applied after Si3N4 deposition. Flat band voltage shifts (ΔVFB) in data retention mode were compared by CV measurement after D2 HPA, which shows that the memory window decreases but charge loss in retention mode after program is suppressed. Trap energy distribution based on thermal activated retention model is extracted to compare the trap density of Si3N4. D2 HPA reduces the amount of trap densities in the band gap range of 1.06-1.18 eV. SIMS profiles are used to analyze the D2 profile in Si3N4. The results show that deuterium diffuses into the Si3N4 and exists up to the Si3N4-SiO2 interface region during post-annealing process, which seems to lower the trap density and improve the memory reliability.

5.
Micromachines (Basel) ; 12(11)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34832812

RESUMEN

In this study, polycrystalline silicon (poly-Si) is applied to silicon-oxide-nitride-oxide-silicon (SONOS) flash memory as a channel material and the physical and electrical characteristics are analyzed. The results show that the surface roughness of silicon nitride as charge trapping layer (CTL) is enlarged with the number of interface traps and the data retention properties are deteriorated in the device with underlying poly-Si channel which can be serious problem in gate-last 3D NAND flash memory architecture. To improve the memory performance, high pressure deuterium (D2) annealing is suggested as a low-temperature process and the program window and threshold voltage shift in data retention mode is compared before and after the D2 annealing. The suggested curing is found to be effective in improving the device reliability.

6.
Phys Rev Lett ; 126(12): 126001, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33834800

RESUMEN

Catalytic reaction events occurring on the surface of a nanoparticle constitute a complex stochastic process. Although advances in modern single-molecule experiments enable direct measurements of individual catalytic turnover events occurring on a segment of a single nanoparticle, we do not yet know how to measure the number of catalytic sites in each segment or how the catalytic turnover counting statistics and the catalytic turnover time distribution are related to the microscopic dynamics of catalytic reactions. Here, we address these issues by presenting a stochastic kinetics for nanoparticle catalytic systems. We propose a new experimental measure of the number of catalytic sites in terms of the mean and variance of the catalytic event count. By considering three types of nanocatalytic systems, we investigate how the mean, the variance, and the distribution of the catalytic turnover time depend on the catalytic reaction dynamics, the heterogeneity of catalytic activity, and communication among catalytic sites. This work enables accurate quantitative analyses of single-molecule experiments for nanocatalytic systems and enzymes with multiple catalytic sites.

7.
Phys Rev E ; 102(4-1): 042612, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33212710

RESUMEN

Living matter often exhibits multimode transport that switches between an active, self-propelled motion and a seemingly passive, random motion. Here, we investigate an exactly solvable model of multimode active matter, such as living cells and motor proteins, which alternatingly undergoes active and passive motion. Our model study shows that the reversible transition between a passive mode and an active mode causes super-Gaussian transport dynamics, observed in various experiments. We find the non-Gaussian character of the matter's displacement distribution is essentially determined by the population ratio between active and passive motion. Interestingly, under a certain population ratio of the active and passive modes, the displacement distribution changes from sub-Gaussian to super-Gaussian as time increases. The mean-square displacement of our model exhibits transient superdiffusive dynamics, yet recovers diffusive behavior at both the short- and long-time limits. We finally generalize our model to encompass complex, multimode active matter in an arbitrary spatial dimension.

8.
Phys Chem Chem Phys ; 22(38): 21664-21671, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32608420

RESUMEN

Singlet oxygen is a toxic chemical but powerful oxidant, exploited in many chemical and biological applications. However, the lifetime of singlet oxygen in air under atmospheric conditions is yet to be known. This has limited safe usage of singlet oxygen in air, despite being a strong antimicrobial agent with the unique property of relaxing to breathable oxygen after serving its purpose. Here, we solve this long-standing problem by combining experimental and theoretical research efforts; we generate singlet oxygen using a photosensitizer at a local source and monitor the time-dependent extent of singlet oxygen reaction with probe molecules at a detector, precisely controlling the detector distance from the source. To explain our experimental results, we employ a theoretical model that fully accounts for singlet oxygen diffusion, radiative and nonradiative relaxations, and the bimolecular reaction with probe molecules at the detector. For all cases investigated, our model, with only two adjustable parameters, provides an excellent quantitative explanation of the experiment. From this analysis, we extract the lifetime of singlet oxygen in the air to be 2.80 s at 23 °C under 1 atm, during which time singlet oxygen diffuses about 0.992 cm. The correctness of this estimation is confirmed by a simple mean-first-passage time analysis of the maximum distance singlet oxygen can reach from the source. We also confirm the sterilization effects of singlet oxygen for distances up to 0.6-0.8 cm, depending on the bacteria strain in question, between the bacteria and the singlet oxygen source.

9.
J Chem Phys ; 152(13): 134102, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32268750

RESUMEN

By applying a recently developed solution method for the Fredholm integral equation of the second kind, we obtain an expression for Green's function of the Smoluchowski equation with a reaction sink. The result is applied to obtain accurate analytical expressions for the time-dependent survival probability of a geminate reactant pair and the rate coefficient of the bulk recombination between reactants undergoing diffusive motions under strong Coulomb interactions. The effects of both repulsive and attractive interactions are considered, and the results are compared with the numerical results obtained by solving the equation for the survival probability and the nonequilibrium pair correlation function. It is shown that the solutions are accurate enough for most reasonable parameter values.

10.
PLoS Comput Biol ; 15(9): e1007356, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31525182

RESUMEN

Even in the steady-state, the number of biomolecules in living cells fluctuates dynamically, and the frequency spectrum of this chemical fluctuation carries valuable information about the dynamics of the reactions creating these biomolecules. Recent advances in single-cell techniques enable direct monitoring of the time-traces of the protein number in each cell; however, it is not yet clear how the stochastic dynamics of these time-traces is related to the reaction mechanism and dynamics. Here, we derive a rigorous relation between the frequency-spectrum of the product number fluctuation and the reaction mechanism and dynamics, starting from a generalized master equation. This relation enables us to analyze the time-traces of the protein number and extract information about dynamics of mRNA number and transcriptional regulation, which cannot be directly observed by current experimental techniques. We demonstrate our frequency spectrum analysis of protein number fluctuation, using the gene network model of luciferase expression under the control of the Bmal 1a promoter in mouse fibroblast cells. We also discuss how the dynamic heterogeneity of transcription and translation rates affects the frequency-spectra of the mRNA and protein number.


Asunto(s)
Biología Computacional/métodos , Redes Reguladoras de Genes , Modelos Biológicos , Animales , Línea Celular , Simulación por Computador , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Ratones , Proteínas/análisis , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de la Célula Individual , Procesos Estocásticos
11.
Proc Natl Acad Sci U S A ; 116(26): 12733-12742, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31175151

RESUMEN

Thermal motion in complex fluids is a complicated stochastic process but ubiquitously exhibits initial ballistic, intermediate subdiffusive, and long-time diffusive motion, unless interrupted. Despite its relevance to numerous dynamical processes of interest in modern science, a unified, quantitative understanding of thermal motion in complex fluids remains a challenging problem. Here, we present a transport equation and its solutions, which yield a unified quantitative explanation of the mean-square displacement (MSD), the non-Gaussian parameter (NGP), and the displacement distribution of complex fluids. In our approach, the environment-coupled diffusion kernel and its time correlation function (TCF) are the essential quantities that determine transport dynamics and characterize mobility fluctuation of complex fluids; their time profiles are directly extractable from a model-free analysis of the MSD and NGP or, with greater computational expense, from the two-point and four-point velocity autocorrelation functions. We construct a general, explicit model of the diffusion kernel, comprising one unbound-mode and multiple bound-mode components, which provides an excellent approximate description of transport dynamics of various complex fluidic systems such as supercooled water, colloidal beads diffusing on lipid tubes, and dense hard disk fluid. We also introduce the concepts of intrinsic disorder and extrinsic disorder that have distinct effects on transport dynamics and different dependencies on temperature and density. This work presents an unexplored direction for quantitative understanding of transport and transport-coupled processes in complex disordered media.

12.
J Phys Chem Lett ; 10(11): 3071-3079, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31117686

RESUMEN

Vesicle transport conducted by motor protein multiplexes (MPMs), which is ubiquitous among eukaryotes, shows anomalous and stochastic dynamics qualitatively different from the dynamics of thermal motion and artificial active matter; the relationship between in vivo vesicle-delivery dynamics and the underlying physicochemical processes is not yet quantitatively understood. Addressing this issue, we perform accurate tracking of individual vesicles, containing upconverting nanoparticles, transported by kinesin-dynein-multiplexes along axonal microtubules. The mean-square-displacement of vesicles along the microtubule exhibits unusual dynamic phase transitions that are seemingly inconsistent with the scaling behavior of the mean-first-passage time over the travel length. These paradoxical results and the vesicle displacement distribution are quantitatively explained and predicted by a multimode MPM model, developed in the current work, where ATP-hydrolysis-coupled motion of MPM has both unidirectional and bidirectional modes.


Asunto(s)
Dineínas/metabolismo , Cinesinas/metabolismo , Cuerpos Multivesiculares/metabolismo , Adenosina Trifosfato/metabolismo , Transporte Axonal , Transporte Biológico Activo , Línea Celular , Humanos , Hidrólisis , Cinética , Microtúbulos/metabolismo , Modelos Biológicos , Nanopartículas/metabolismo
13.
Nat Commun ; 9(1): 297, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29352116

RESUMEN

Gene expression is a complex stochastic process composed of numerous enzymatic reactions with rates coupled to hidden cell-state variables. Despite advances in single-cell technologies, the lack of a theory accurately describing the gene expression process has restricted a robust, quantitative understanding of gene expression variability among cells. Here we present the Chemical Fluctuation Theorem (CFT), providing an accurate relationship between the environment-coupled chemical dynamics of gene expression and gene expression variability. Combined with a general, accurate model of environment-coupled transcription processes, the CFT provides a unified explanation of mRNA variability for various experimental systems. From this analysis, we construct a quantitative model of transcription dynamics enabling analytic predictions for the dependence of mRNA noise on the mRNA lifetime distribution, confirmed against stochastic simulation. This work suggests promising new directions for quantitative investigation into cellular control over biological functions by making complex dynamics of intracellular reactions accessible to rigorous mathematical deductions.


Asunto(s)
Expresión Génica , Modelos Genéticos , ARN Mensajero/metabolismo , Simulación por Computador , Ambiente , Humanos , Procesos Estocásticos , Transcripción Genética
15.
Sci Adv ; 3(9): e1700676, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28913424

RESUMEN

At the core of homologous DNA repair, RecA catalyzes the strand exchange reaction. This process is initiated by a RecA loading protein, which nucleates clusters of RecA proteins on single-stranded DNA. Each cluster grows to cover the single-stranded DNA but may leave 1- to 2-nucleotide (nt) gaps between the clusters due to three different structural phases of the nucleoprotein filaments. It remains to be revealed how RecA proteins eliminate the gaps to make a seamless kilobase-long filament. We develop a single-molecule fluorescence assay to observe the novel internal dynamics of the RecA filament. We directly observe the structural phases of individual RecA filaments and find that RecA proteins move their positions along the substrate DNA to change the phase of the filament. This reorganization process, which is a prerequisite step for interjoining of two adjacent clusters, requires adenosine triphosphate hydrolysis and is tightly regulated by the recombination hotspot, Chi. Furthermore, RecA proteins recognize and self-align to a 3-nt-period sequence pattern of TGG. This sequence-dependent phase bias may help the RecA filament to maintain structural integrity within the kilobase-long filament for accurate homology search and strand exchange reaction.


Asunto(s)
Adenosina Trifosfato/química , Rec A Recombinasas/química , Adenosina Trifosfato/metabolismo , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Cinética , Unión Proteica , Rec A Recombinasas/metabolismo , Relación Estructura-Actividad
16.
J Phys Chem Lett ; 8(13): 3152-3158, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28609615

RESUMEN

Enzyme-to-enzyme variation in the catalytic rate is ubiquitous among single enzymes created from the same genetic information, which persists over the lifetimes of living cells. Despite advances in single-enzyme technologies, the lack of an enzyme reaction model accounting for the heterogeneous activity of single enzymes has hindered a quantitative understanding of the nonclassical stochastic outcome of single enzyme systems. Here we present a new statistical kinetics and exactly solvable models for clonal yet heterogeneous enzymes with possibly nonergodic state dynamics and state-dependent reactivity, which enable a quantitative understanding of modern single-enzyme experimental results for the mean and fluctuation in the number of product molecules created by single enzymes. We also propose a new experimental measure of the heterogeneity and nonergodicity for a system of enzymes.


Asunto(s)
Enzimas/química , Modelos Químicos , Algoritmos , Biocatálisis , Enzimas/metabolismo , Cinética , Factores de Tiempo
17.
Nat Commun ; 5: 4761, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25175593

RESUMEN

Cell-to-cell variation in gene expression, or noise, is a general phenomenon observed within cell populations. Transcription is known to be the key stage of gene expression where noise is generated, however, how variation in RNA polymerase (RNAP) concentration contributes to gene expression noise is unclear. Here, we quantitatively investigate how variations in absolute amounts of RNAP molecules affect noise in the expression of two fluorescent protein reporters driven by identical promoters. We find that intrinsic noise is independent of variation in RNAP concentrations, whereas extrinsic noise, which is variation in gene expression due to varying cellular environments, scales linearly with variation in RNAP abundance. Specifically, the propagation of RNAP abundance variation to expressed protein noise is inversely proportional to the concentration of RNAP, which suggests that the change in noise that results from RNAP fluctuations is determined by the fraction of promoters that is not occupied by RNAP.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/metabolismo , Transcripción Genética , Proteínas Virales/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Luminiscentes/genética , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Virales/genética , Proteína Fluorescente Roja
18.
Artículo en Inglés | MEDLINE | ID: mdl-25019748

RESUMEN

Liquid helium does not obey the Gibbs fluctuation-compressibility relation, which was noted more than six decades ago. However, still missing is a clear explanation of the reason for the deviation or the correct fluctuation-compressibility relation for the quantum liquid. Here we present the fluctuation-compressibility relation valid for any grand canonical system. Our result shows that the deviation from the Gibbs formula arises from a nonextensive part of thermodynamic potentials. The particle-exchange symmetry of many-body wave function of a strongly degenerate quantum gas is related to the thermodynamic extensivity of the system; a Bose gas does not always obey the Gibbs formula, while a Fermi gas does. Our fluctuation-compressibility relation works for classical systems as well as quantum systems. This work demonstrates that the application range of the Gibbs-Boltzmann statistical thermodynamics can be extended to encompass nonextensive open systems without introducing any postulate other than the principle of equal a priori probability.


Asunto(s)
Teoría Cuántica , Termodinámica , Entropía , Gases , Modelos Estadísticos
19.
J Chem Theory Comput ; 8(4): 1415-25, 2012 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-26596754

RESUMEN

We investigate the reaction event counting statistics (RECS) of an elementary biopolymer reaction in which the rate coefficient is dependent on states of the biopolymer and the surrounding environment and discover a universal kinetic phase transition in the RECS of the reaction system with dynamic heterogeneity. From an exact analysis for a general model of elementary biopolymer reactions, we find that the variance in the number of reaction events is dependent on the square of the mean number of the reaction events when the size of measurement time is small on the relaxation time scale of rate coefficient fluctuations, which does not conform to renewal statistics. On the other hand, when the size of the measurement time interval is much greater than the relaxation time of rate coefficient fluctuations, the variance becomes linearly proportional to the mean reaction number in accordance with renewal statistics. Gillespie's stochastic simulation method is generalized for the reaction system with a rate coefficient fluctuation. The simulation results confirm the correctness of the analytic results for the time dependent mean and variance of the reaction event number distribution. On the basis of the obtained results, we propose a method of quantitative analysis for the reaction event counting statistics of reaction systems with rate coefficient fluctuations, which enables one to extract information about the magnitude and the relaxation times of the fluctuating reaction rate coefficient, without a bias that can be introduced by assuming a particular kinetic model of conformational dynamics and the conformation dependent reactivity. An exact relationship is established between a higher moment of the reaction event number distribution and the multitime correlation of the reaction rate for the reaction system with a nonequilibrium initial state distribution as well as for the system with the equilibrium initial state distribution.

20.
Org Lett ; 13(19): 5260-3, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21916492

RESUMEN

Chemosignaling of hydrazine by selective deprotection of levulinated coumarin was investigated. In the presence of hydrazine, levulinated coumarin was selectively deprotected, resulting in chromogenic and fluorescent turn-on type signaling. The selective naked-eye detectable signaling of hydrazine was possible in the presence of representative metal ions and common anions in an aqueous environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...